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Spectral Accuracy

Let SNf (x) denote the Fourier projection of a 2π periodic function:

SNf (x) =
∑

|k|≤N
f̂ (k)eikx

f̂ (k) =
1

2π

∫ π
−π f (x)e−ikxdx

Then we know (Tadmor, Acta Numerica 2007)

• The error depends only on the global smoothness of f (x)

|SNf (x)− f (x)| ≤ ||f ||Cs
1

N s−1

Where ||f ||Cs = max|k|≤s ||f (k)||L∞

• The Fourier coefficients decay fast

f̂ (k) ≤ A||f ||Cs
1

1 + |k|s
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Spectral Accuracy

For functions in Gevrey class Gα

||f ||Cs ∼ (s!)α

ηα

We have

•
|SNf (x)− f (x)| ≤ ANe−α(ηN)

1
α

•
f̂ (k) ∼ e−αη|k|

1
α

In particular if α = 1, f (x) is analytic and

•

f̂ (k) ∼ e−η|k|

|SNf (x)− f (x)| ∼ Ne−ηN
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Spectral Accuracy - the General Case

Consider an orthonormal family {Ψk(x)}, under a scalar product ( · , · ).
Denote

fN(x) =
N∑
k=0

(f,Ψk)Ψk(x)

We have spectral accuracy if

•
||f − fN || ≤ A||f ||Cs

1

N s−1

•
(f, ψk) ∼ ||f ||Cs

1

N s

In particular for an analytic function fN converges exponentially to f .

• Examples are Chebyshev and Legendre polynomials, also general Jacoby poly-

nomials.
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Gibbs Phenomenon

If the solutions are discontinuous (Shock), we have the Gibbs Phenomenon.
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Remark :

The order of accuracy for the high order schemes are reduced to O(1).
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Computer Tomography

We have to recover a density function f (x, y) from its Radon Transform p(r, θ),

p(r, θ) =
∫ ∞
−∞

∫ ∞
−∞ f (x, y)δ(x cos(θ) + y sin(θ)− r) dx dy

The Slice Theorem:

p̂(ρ, θ) = f̂ (ρ cos θ, ρ sin θ)

where

• p̂ is the Fourier Transform (in r) of p,

• f̂ is the two dimensional Fourier Transform of f .

The DFM

p→ p̂→ f̂ → f
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Reprojection - General Theory

• We assume that

– f (x) is in L2[−1, 1];

– there is a subinterval [a, b] ⊂ [−1, 1] in which f (x) is analytic;

– there exists an orthonormal family {Ψk(x)}, under a scalar product ( · , · ).

• Denote

fN(x) =
N∑
k=0

(f,Ψk)Ψk(x)

•

lim
N→∞

|f (x)− fN(x)| = 0

almost everywhere in x ∈ [−1, 1].

• Denote ξ = −1 + 2x−ab−a such that if a ≤ x ≤ b then −1 ≤ ξ ≤ 1.
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Reprojection - Gibbs Complementary

Definition:

The two parameters family {Φλ
k(ξ)} is called a Gibbs complementary to the family

{Ψk(x)} if

(a) Orthogonality

< Φλ
k(ξ),Φ

λ
l (ξ) >λ = δkl.

(b) Spectral Convergence

The expansion of an analytic function g(ξ) in the basis Φλ
k(ξ) converges expo-

nentially fast, i.e.

max
−1≤ξ≤1

∣∣∣∣∣∣g(ξ)−
λ∑
k=0

< g,Φλ
k) >λ Φλ

k(ξ)

∣∣∣∣∣∣ ≤ e−q1λ, q1 > 0.

(c) The Gibbs Condition

There exists a number β < 1 such that if λ = βN then

∣∣∣∣< Φλ
l (ξ),Ψk(x(ξ)) >λ

∣∣∣∣ max
−1≤ξ≤1

∣∣∣∣Φλ
l (ξ)

∣∣∣∣ ≤
αN
k

λ , k > N, l ≤ λ, α < 1.
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Reprojection

Comments:

• Condition (b) implies that the expansion of a function g in the basis {Φλ
l (ξ)}

converges exponentially fast if g is analytic in −1 ≤ ξ ≤ 1 (corresponding to

a ≤ x ≤ b).

• Condition (c) states that the projection of {Ψk} for large k on the low modes

in {Φ}, (Φλ
l (ξ) with small l) is exponentially small in the interval −1 ≤ ξ ≤ 1.
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Resolution of the Gibbs Phenomenon

Theorem

• f (x) ∈ L2[−1, 1] and analytic in [a, b] ⊂ [−1, 1].

• {Ψk(x)} is an orthonormal family with the inner product ( · , · ).

• {Φλ
k(ξ)} is a Gibbs complementary to the family {Ψk(x)} as defined in (a)-(c),

with λ = βN .

Then

max
a≤x≤b

∣∣∣∣∣∣f (x)−
λ∑
l=0

< fN ,Φ
λ
l >λ Φλ

l (ξ(x))

∣∣∣∣∣∣ ≤ e−qN , q > 0.
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Reprojection

Comment:

• Even if we have a slowly converging series

N∑
k=0

(f,Ψk)Ψk(x)

it is still possible to get a rapidly converging approximation to f (x) if one can

find another basis function {Φ} that yields a rapidly converging series to f

as long as the projection of the high modes in the old basis {Ψ} on the low

modes in the new basis is exponentially small.
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Gegenbauer Polynomials

• In the following theorem we will use

Φλ
k(ξ) =

1√
hλk
Cλ
k (ξ)

where Cλ
k (ξ) is the Gegenbauer polynomial and hλk is the normalization factor.

The < ·, · >λ inner product is defined by

< f, g >λ =
∫ 1

−1
(1− ξ2)λ−

1
2f (ξ)g(ξ) dξ

If g(ξ) be a function with p continuous derivatives then

•

|g(ξ)−
βN∑
k=0

< g(ξ), CβN
k > CβN

k (ξ)| ≤ ||g||Cp
1

N p−1

• If g(ξ) is analytic then

|g(ξ)−
βN∑
k=0

< g(ξ), CβN
k > CβN

k (ξ)| ≤ Ce−ηN
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Spectral Accuracy

Suppose now that the family Ψk(x) provides spectral accuracy that is

• If f (x) has p continuous derivatives then

|(f,Ψk)| ≤ C(p)
1

kp
max

−1≤x≤1
||f ||Cs

Where

C(p) ∼ qp for some q

Then we have

• Theorem

| < Ψk,Φ
λ
l >λ Φλ

l | ≤ (
αN

k
)λ

The number α is less then unity provided that

λ ≤ βN , β ≤ (b− a)
e

27q

• We can summarize:

The Gegenbauer polynomials Φλ
k is the Gibbs complementary to Ψk
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Spectral Accuracy - revised

We thus have a new meaning to Spectral Accuracy:

• If a function f (x) is analytic then its expansion in terms of Ψk converges expo-

nentially.

• If f (x) is piecewise analytic then the expansion coefficients in terms of Ψk con-

tain enough information such that an exponentially convergent approximation

can be constructed.
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Robust Gibbs Complementary

• The use of Gegenbauer polynomials is not robust.

• It suffers from numerical round off errors (Boyd, Gelb and Tanner)

• A detailed analysis of parameters was done by Jackiewicz, Gelb and J.

• A more robust method is needed.

• A robust Gibbs complementary basis (Gelb - Tanner)

– For an analytic function the expansion of the function in the new basis

converges exponentially.

– The projection of high modes in the original basis on the low modes in the

new basis is exponentially small.

– As the order . of the original expansion increases the weight function of

the new basis converges to a weight whose associate basis satisfies the first

requirement.
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Robust Gibbs Complementary

Examples:

•
ω = exp (

ξ2

ξ2 − 1
)

• Freud Polynomials (Gelb Tanner)

–

ω(ξ) = e−cξ
2λ

– For optimality

λ = round


√√√√√N(b− a)

2
− 2

√
2


–

c = lnε

and ε is the machine error.
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Comparsion of Freud and Gegenbauer Reprojection

f (x) =

 (2 exp(2π(x + 1))− 1− exp(π))/(exp(π)− 1) −1 ≤ x < 1
2

− sin(2πx/3 + π/3) −1
2 ≤ x ≤ 1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

• Error plot of the Gegenbauer (left) and Freud (right) reprojection of the func-

tion with N = 64, 128, 256.
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Gegenbauer Reconstruction of 3D Image

• Segmentation of Mouse Brain MRI with 256× 256× 181 pixel points.

(Source : Southwest Small Animal Imaging Resource, University of Arizona)
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Spectral Filters - Fourier

• Definition:

SσNf (x) =
∑

|k|≤N
σ(
|k|
N

)f̂ (k)eikx

The function σ has to satisfy the Accuracy Condition (Vandeven)

•

σ(n)(0) = δn0 n ≤ p

σ(n)(1) = 0 n ≤ p

• Applied efficiently.

• Recovers p th order accuracy away from discontinuities.

•
|f (x)− SσNf (x)| ≤ K

d(x)p−1N p−1

Here d(x) is the distance from the discontinuity.
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• Examples: (in all examples |k|
N = y )

– Fejer

σ(y) = 1− y

– Raised cosine

σ(y) =
cos(.5πy)p

(.5πy)p

– Exponential (The most popular)

σ(y) = e−αy
β

– Erfc-Log (Boyd)

σ(y) =
1

2
erfc

2
√
p(|y| − 1

2
)

√√√√√√−ln(1− 4(y − 1
2)

2

4(y − 1
2)

2


– (Vandeven)

σ(y) = 1− (2p− 1)!

(p− 1)!

∫ y
0
tp−1(1− t)p−1dt

– See Scot Sarra’s web page for descriptions and Matlab programs.

Page 44 of 60



Exponentially Accurate Filter (Tanner, Tadmor and Tanner)

• Consider the filter function

σ(y) = e
(δy)2

2
p∑
j=0

1

2jj!
(δy)2j

Where

–

δ =
√
θdxN

– dx defines neighborhood of analyticity around a point x

–

p = θ2dxN

• Then

|f (x)− ∑
|k|≤N

σ(
k

N
)f̂ (k)eikx| ≤ N

dx
e−ηdxN
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Edge Detections - Tadmor, Gelb and Tadmor

• Most reconstruction methods need the location of jump discontinuities

• We assume that we are given f̂ (k) the Fourier coefficients of a discontinuous

function f (x).

• We will review some of the results, and only for the Fourier case. Many other

methods exist and also for other expansions, as Chebyshev and Legendre.

• Idea: Look at

ue(x) =
d

dx
SNf (x)

• Let cj be the location of the jump discontinuity with magnitude [f ](cj) = f (c+j )−
f (c−j )

• Then

ue(x) → O(
1

N
) x 6= cj

ue(cj) → [f ](cj)
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Edge Detections - Tadmor, Gelb and Tadmor (Cont.)

• Nonlinear Enhancement:

un(x) = N
Q
2 (ue(x))Q

• Then we have

un(x) → O(N−Q
2 ) x 6= cj

un(cj) → [f ](cj)
QN

Q
2

For more refinements consult Sarra.
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General Theory - Tadmor, Gelb and Tadmor

• Define Concentration Kernels

Kσ
N(y) = − 1

cσ

N∑
k=1

σ(
k

N
) sin(ky)

σ(ξ)

ξ
≤ C

cσ =
∫ 1

0

σ(ξ)

ξ
dξ

(i) KN is odd.

(ii) ∫
y≥0

KN(y)dy = −1 + εN

(iii) Small first moment ∫
y
KN(y)ω(y)dy ∼ εN ||ω| BV

Then

|KN ∗ f (x)− [f ](x)| ≤ εN .
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Topic not covered

• Most of the results can be carried out for interpolation in Gauss points.

• Inverse Gegenbauer methods (Jung and Shizgal, Pasquetti and more).

• Pade reprojection, (Fornberg, Don Kaber and Min, Boyd)

• Gibbs phenomenon in many other expansions.

• Data coming from a solution of linear hyperbolic equations with discontinuous

initial conditions (Mock and Lax, Osher and Majda, Gottlieb and Tadmor).

• Solutions of nonlinear hyperbolic equations (Lax (2005) showed that there

must be a Gibbs phenomenon for accuracy greater than first order, He also

argued that there is enough information to postprocess high order accuracy).
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Richtmyer-Meshkov Instability

• Hugoniot-Rankine condition for the

shock

• Pre-Shock Temperature T = 296 K

• Pre-Shock Pressure P = 0.5 atm

• Xenon and Argon density are ρXe =

2.90 × 10−3 g
cm3 and ρAr = 0.89 × 10−3 g

cm3

respectively, at half of the normal at-

mospheric pressure

• Specific heat ratio γ = 5
3

• Atwood number At = 0.54

• Mach number M = 4.46

• Wave Length λ = 3.6 cm

• Amplitude a = 1.0 cm

Page 50 of 60



Richtmyer-Meshkov Instability (Cont.)
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WENO Third Order WENO Fifth Order

• Density contour plot for the WENO third order (left) and fifth order (right)

finite difference scheme with 1024× 256 grid points.
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Richtmyer-Meshkov Instability (Cont.)
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WENO Seventh Order WENO Ninth Order

• Density contour plot for the WENO seventh order (left) and fifth order (right)

finite difference scheme with 1024× 256 grid points.
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Richtmyer-Meshkov Instability (Cont.)
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WENO Eleventh Order Spectral method

• Density contour plot for the WENO eleventh order (left) and spectral Cheby-

shev collocation method with 1024× 256 grid points.
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The Nozzle Problem

The Euler system is
ρ

ρu

E

 +


ρu

P + ρu2

u(P + E)


x

= −Ax

A


ρu

ρu2

u(P + E)


• A = A(x) is the cross area function of the nozzle and Ax = dA

dx .

• The shape of the nozzle is calculated by the requirement of piecewise linear dis-

tribution of Mach number from Min = 0.8 at the inlet to Mout = 0.46665578743659

at the exit.

• The steady-state solution has a shock at xs = 1
2, halfway across the domain

(the domain is (0, 1)).

• The Mach number just before the shock is M = 1.3 and just after the shock is

M = 0.78595708016148.

• The other relevant quantities are

ρin = 0.74 uin = 0.8912 Pin = 0.6560

ρout = 0.8804 uout = 0.5405 Pout = 0.8436
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Nozzle (Cont.)

• The spatial discretization is achieved using a fifth order WENO method (third

order near the shock)with Roe building blocks.

• Steady state is achieved by timestepping (using a third order SSP Runge-

Kutta method) until the residuals go down to machine zero.

• Results

– The pre-shock region maintains high order accuracy away from the shock

– In the post shock region the accuracy is first order.

Page 55 of 60



Nozzle : Results (Cont.)

The raw data errors (compared to the exact solution) are:

N l1 error l1 order l2 error l2 order l∞ error

600 1.85E-8 0.86E-5 1.37E-3

800 1.24E-8 1.39 0.80E-5 1.20 1.09E-3

1000 9.82E-6 1.04 7.00E-5 0.29 1.27E-3

1200 8.26E-6 0.95 6.55E-5 0.63 1.19E-3

1400 7.16E-6 0.93 5.84E-5 0.34 1.27E-3

1600 6.20E-6 1.08 5.08E-5 0.65 1.19E-3

1800 5.55E-6 0.94 4.79E-5 0.50 1.19E-3

Page 56 of 60



Nozzle : Results (Cont.)

The postprocessed data errors (compared to the exact solution) are:

N λ m l1 error l1 order l2 error l2 order l∞ error l∞ order

600 3 3 7.00E-5 1.60E-4 8.16E-4

800 3 4 2.64E-5 3.8 5.80E-5 3.5 3.33E-4 3.11

1000 4 5 1.20E-5 3.5 2.60E-5 3.6 1.66E-4 3.13

1200 5 6 7.19E-6 2.8 1.31E-5 3.7 8.19E-5 3.8

1400 6 7 4.08E-6 3.7 6.17E-6 4.9 4.09E-5 4.5

1600 6 8 3.20E-6 1.8 3.97E-6 3.3 1.73E-5 6.46

1800 7 9 2.34E-6 2.6 2.53E-6 3.8 8.95E-6 5.57
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